1/3x^2+1=10

Simple and best practice solution for 1/3x^2+1=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x^2+1=10 equation:



1/3x^2+1=10
We move all terms to the left:
1/3x^2+1-(10)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x^2-9=0
We multiply all the terms by the denominator
-9*3x^2+1=0
Wy multiply elements
-27x^2+1=0
a = -27; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-27)·1
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*-27}=\frac{0-6\sqrt{3}}{-54} =-\frac{6\sqrt{3}}{-54} =-\frac{\sqrt{3}}{-9} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*-27}=\frac{0+6\sqrt{3}}{-54} =\frac{6\sqrt{3}}{-54} =\frac{\sqrt{3}}{-9} $

See similar equations:

| 2(x-1)-9=-21 | | q=-3 | | 7x/15-(1)=22 | | 8x+100=12 | | 3(5x+1)=-2(2x-4)-3x | | 1/3x^2=9 | | 17x^2-15x+2=0 | | 7-5=10x-1x-15 | | F(x)=x2-4x+7 | | x=11=-14 | | 3x/7-(2)=15 | | (3s+8)^2=36 | | 2u+2=12 | | 18-4x=-22 | | 3(c−13)=−30 | | -5(x+6)-4=-9 | | 4y+4=-y+5 | | 6(x-1)-12=-24 | | -35x=14,210 | | 103-8x=55 | | -2h-3=12+h | | −3(n+4)=15 | | -3(-3w+8)-w=4(w-6)-2 | | -2(4x-3)=22 | | 7.2=0.2n | | n-41,377=-1253 | | 9d+2=29 | | 4y+1y=4y^2 | | -4(1+7b)-5b=-169 | | 6x−3=12 | | -8y+20=-6(y-1) | | 5t^2-18t-9=0 |

Equations solver categories